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Chapter 1

Fundamentals of Mechanics

1.1 Parabolic Motion

A gun is mounted on a hill of height h above a level plane. Neglecting air resistance,
find the angle of elevation α for the greatest horizontal range at a given muzzle speed
v. Find this range.

Since there is no horizontal force, the distance traveled horizontally is

d = vt cos(α)

In the vertical direction, we have gravitational force,

−h = vt sin(α)− 1/2 gt2

Taking the vertical equation, we can use the quadratic formula to solve for t. We also want to
keep the positive value,

t =
v sin(α) +

√
v2 sin2(α) + 2gh

g

Substituting in distance,

d

v cos(α)
=
v sin(α) +

√
v2 sin2(α) + 2gh

g

d =
v2 sin(α) cos(α) + v cos(α)

√
v2 sin2(α) + 2gh

g

5



6 CHAPTER 1. FUNDAMENTALS OF MECHANICS

We want to maximize this value, so we take the derivative according to α and set the result
equal to 0. First, we get rid some of constants by dividing by v2/g,

∂d

∂α
= cos2(α)− sin2(α)− sin(α)

√
sin2(α) +

2gh

v2
+ sin(α) cos2(α)

(
sin2(α) +

2gh

v2

)−1/2
= 0

Using the relation cos(2α) = cos2(α)−sin2(α) and multiplying through by the inverse root part,

cos(2α)

(
sin2(α) +

2gh

v2

)1/2

− sin(α)

(
sin2(α) +

2gh

v2

)
+ sin(α) cos2(α) = 0

cos(2α)

(
sin2(α) +

2gh

v2

)1/2

= sin(α)

(
sin2(α)− cos2(α) +

2gh

v2

)

cos(2α)

(
sin2(α) +

2gh

v2

)1/2

= sin(α)

(
2gh

v2
− cos(2α)

)

cos2(2α)

(
sin2(α) +

2gh

v2

)
= sin2(α)

((
2gh

v2

)2

− 4gh

v2
cos(2α) + cos2(2α)

)

2gh

v2
(
cos2(2α) + 2 cos(2α) sin2(α)

)
=

(
2gh

v2

)2

sin2(α)

Using the relation sin2(α) = 1/2 (1− cos(2α)),

cos(2α) =
1

2

(
2gh

v2

)
(1− cos(2α))

cos(2α)

(
1 +

gh

v2

)
=
gh

v2

cos(2α) =
gh

v2 + gh

To find the maximum range, we plug this back into our equation for the distance. It is easiest
if we convert all of the trigonometric functions to cos(2α),

cos(α) =

√
1 + cos(2α)

2
=

√
v2 + 2gh

2(v2 + gh)

sin(α) =

√
1− cos(2α)

2
=

√
v2

2(v2 + gh)
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R =
1

g

(
v2
√
v2(v2 + 2gh)

2(v2 + gh)
+ v

√
v2 + 2gh

2(v2 + gh)

√
v4

2(v2 + gh)
+ 2gh

)

=
1

g

(
v3
√
v2 + 2gh

2(v2 + gh)
+
v(v2 + 2gh)

√
v2 + 2gh

2(v2 + gh)

)

R =
v

g

√
v2 + 2gh
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1.2 Block on a Ramp

A mass m slides without friction on a plane tilted at an angle θ in a vertical uniform
gravitational field g. The plane itself is on rollers and is free to move horizontally,
also without friction; it has mass M . Find the acceleration A of the plane and the
acceleration a of the mass m.

We draw the block as in figure (1.2) with X being the position of the
block. From the diagram, we get a relation between the positions and
the angles,

tan(θ) =
y

X − x

X = x+ y cot(θ)

Taking the time derivative twice,

Ẍ = ẍ+ ÿ cot(θ)

Since there are no external forces in the x-direction, we can use conservation of momentum.
Since everything is initially at rest,

0 = MẊ +mẋ

We now want to take a time derivative,

MẌ +mẍ = 0

From drawing free body diagrams, we can get the forces on each component,{
mẍ = N sin(θ)

mÿ = −mg +N cos(θ)

{
MẌ = −N sin(θ)

MŸ = 0

We can now solve for the necessary values. We’ll start by relating X and x,

Ẍ = −m
M
ẍ

−ÿ cot(θ) =
(

1 +
m

M

)
ẍ

Alternatively,

mÿ = −mg +mẍ cot(θ)
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Combining these two,

ÿ = −g −
(

M

m+M

)
ÿ cot2(θ)

ÿ

(
1 +

M cos2(θ)

(M +m) sin2(θ)

)
= −g

ÿ = −g
(

(M +m) sin2(θ)

M +m sin2(θ)

)

ẍ = −ÿ
(

M

m+M

)
cot(θ)

= g
cos(θ)

sin(θ)

(
M

m+M

)(
(m+M) sin2(θ)

m sin2(θ) +M

)

ẍ = g

(
M sin(θ) cos(θ)

m sin2(θ) +M

)

Ẍ = −g
(
m sin(θ) cos(θ)

m sin2(θ) +M

)
We can now find the total acceleration of each component. Since there is no acceleration in the

vertical direction of the ramp, it’s pretty easy,

A = Ẍ = −g
(
m sin(θ) cos(θ)

m sin2(θ) +M

)
The block,

a2 = ẍ2 + ÿ2 =

(
g2

(m sin2 +M)2

)
[M2 sin2(θ) cos2(θ) + (m+M)2 sin4(θ)]

=

(
g2

(m sin2 +M)2

)
sin2(θ)(M +m sin2(θ))2

= g2 sin2(θ)

a = g sin(θ)
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1.3 Variations on a Rolling Cylinder

Figures 1.12(a)-(e) show a hand pulling a circular cylindrical object (whose mass is
distributed with cylindrical symmetry). The cylinder has radius R, mass M , and
moment of inertia I about its symmetry axis. The hand applies a force F by means of
a weightless, flexible string. In all four cases find the acceleration A of the center of
mass and the angular acceleration α of the cylindrical object; show explicitly that the
work-energy theorem is satisfied.

1.3.a Empty space, no gravity, the string passes through the center of
mass of the cylinder.

In this case, we have no angular acceleration since there is no friction to cause the cylinder to
roll. In fact, this problem would be the same regardless of the shape of the cylinder. The only force
is from the string,

A =
F

M

To verify that the work-energy theorem (1.8), we can find the work,

W = Fx

Using the equations of kinematics, we can substitute in the linear acceleration,

= (MA) ·
(
1/2 At2

)
= 1/2 M(At)2

W = 1/2 Mv2

We recognize the right side as the kinetic energy of an object.

1.3.b Empty space, no gravity, the string is wrapped around the cylinder.
[Question: How can the hand, applying the same force as in Part
(a), supply the (hint) same translational kinetic energy as in Part
(a) plus the extra rotational kinetic energy?]

This time, we have the same linear acceleration as before, but now we add an additional rota-
tional component.

A =
F

M
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α =
FR

I

Same as before, to find the work we multiply the force by the total distance traveled,

W = F (x+Rθ)

= (MA)
(
1/2 At2

)
+R

(
Iα

R

)(
1/2 αt2

)
= 1/2 M(At)2 + 1/2 I(αt)2

W = 1/2 Mv2 + 1/2Iω2

The work is made up on the linear kinetic energy and the rotational kinetic energy.
To answer the additional question, think of a door. If you push the door near the hinges, it is a

lot more difficult to close than if you apply the force near the handle. Then imagine that you take
the door off the hinges. Now it doesn’t matter where you push the door, it is going to move the
same linear distance.

1.3.c Uniform vertical gravitation sufficient, together with friction, to
constrain the cylinder to roll without slipping on the surface shown.
The string passes through the center of mass of the cylinder.

Now we introduce friction, which opposes the motion of the cylinder. In the linear direction,

F − f = MA

In the angular direction,

fR = Iα

The condition for rolling without slipping is αR = A.We can solve for A and α,

F − Iα

R
= MA

F − IA

R2
= MA

FR2 = A(MR2 + I)

A =
FR2

MR2 + I
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α =
FR

MR2 + I

As we did in the previous part, the work is a combination of the linear distance moved and the
angular distance,

W = (F − f)x+ fRθ

= (F − f)

(
1

2

F − f
M

t2
)

+R

(
Iα

R

)(
1/2 Iαt2

)

= 1/2 M

(
F − f
M

t

)2

+ 1/2 I(αt)2

W = 1/2 Mv2 + 1/2 Iω2

1.3.d Same as Part (c), but with the string wrapped around the cylinder.
[Questions: In which direction is the frictional force? How does
the hand manage to supply the necessary translational and kinetic
energies different from Part (c)?]

Let’s go ahead and answer the additional questions first. If we had no friction, we would expect
the wheel to rotate clockwise, so the frictional force must point counterclockwise since it has to
oppose that motion. I think the answer to the second additional question is similar to that for part
(b).

As in part (c), let’s write down the equations of motion,

F − f = MA

(F + f)R = Iα

Using the rolling without slipping condition, we can solve for A and α.

A =
2FR2

MR2 + I

α =
2FR

MR2 + I

The work,

W = (F − f)x+ (F − f)Rθ
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= (F − f)

(
1

2

F − f
M

t2
)

+ (Iα)
(
1/2 Iαt2

)
(1.3.1)

= 1/2 M

(
F − f
M

t

)2

+ 1/2 I(αt)2

W = 1/2 Mv2 + 1/2 Iω2

1.3.e Same as Part (c), but with the string now wrapped around a shaft
of radius r < R within the cylinder (it’s a kind of yo-yo). [Question:
In which direction is the frictional force?]

This time, without friction, the wheel would rotate counter-clockwise, so the frictional force
must point clockwise. Our equations of motion are similar to before,

F − f = MA

fR− Fr = Iα

Using the rolling without slipping condition, we can solve,

A =
F (R2 − rR)

MR2 + I

α =
F (R− r)
MR2 + I

The work,

W = (F − f)x+ fRθ − Frθ

= (MA)
(
1/2 At2

)
+ (Iα)

(
1/2 αt2

)
= 1/2 M(At)2 + 1/2 I(αt)2

W = 1/2 Mv2 + 1/2 Iω2
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1.4 Elastic Collision

A particle of mass m1 makes an elastic (kinetic-energy conserving) collision with an-
other particle of mass m2. Before the collision m1 has velocity ~v1 and m2 is at rest
relative to a certain inertial frame which we shall call the laboratory system. After
the collision m1 has velocity ~u1 making an angle θ with ~v1.

1.4.a Find the magnitude of ~u1

From conservation of momentum,

m1~v1 = m1~u1 +m2~u2

From conservation of energy,

m1v
2
1 = m1u

2
1 +m2u

2
2

We rearrange the conservation of momentum equation and square both sides. We want to
rearrange since we know the angle between ~v1 and ~u1, but we don’t know the angle between ~u1 and
~u2,

m1~v1 −m1~u1 = m2~u2

m2
1v

2
1 +m2

1u
2
1 − 2m2

1u1v1 cos(θ) = m2
2u

2
2

Substituting u2 into the conservation of energy equation,

m1v
2
1 −m1u

2
1 −

m2
1

m2
(v21 + u21 − 2u1v1 cos(θ)) = 0

u21(m1m2 +m2
1)− 2m2

1u1v1 cos(θ) + v21(m2
1 −m1m2) = 0

Using the quadratic equation,

u1 = v1
m1 cos(θ)±

√
m2

2 −m2
1 sin2(θ)

m1 +m2

To determine if we want plus or minus, we look at the limiting case m2 = m1. We expect that
when two balls of equal mass collide, m2 should continue moving in a straight line while m1 stops
moving. This is why you want to hit pool balls on the bottom since that gives the ball no spin and
causes it to stop moving when it hits another ball (I think, I am rather rubbish at pool).

u1 = v1
m cos(θ)±

√
m2 −m2 sin2(θ)

2m
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= v1
m cos(θ)±

√
m2 cos2(θ)

2m

Since we want u1 to vanish, we choose the negative,

u1 = v1
m1 cos(θ)−

√
m2

2 −m2
1 sin2(θ)

m1 +m2

1.4.b Relative to another inertial frame, called the center-of-mass sys-
tem, the total linear momentum of the two-body system is zero.
Find the velocity of the center-of-mass system relative to the lab-
oratory system.

Let’s say that the center-of-mass (CoM) is moving with velocity V . To convert from the lab
frame to the CoM frame, {

v′1 = v1 − V
v′2 = −V

Since the momentum in the CoM frame is zero,

m1v
′
1 +m2v

′
2 = 0

m1(v1 − V )−m2V = 0

m1v1 = (m1 +m2)V

V =
m1

m1 +m2
v1

1.4.c Find the velocities ~v′1, ~v
′
2, ~u

′
1, ~u

′
2 of the two bodies before and af-

ter the collision in the center-of-mass system. Find the scattering
angle θ′ (the angle between ~v′1 and ~u′1) in terms of θ.

Solving for v′1 and v′2, {
v′1 = v1 − V
v′2 = −V
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~v′1 =

m2

m1 +m2
v1

~v′2 = − m1

m1 +m2
v1

From conservation of momentum in the CoM frame,

m1~v
′
1 +m2~v

′
2 = m1~u

′
1 +m2~u

′
2 = 0

If we want to convert from the lab frame to the CoM frame,

~u′1 = ~u1 − ~V

We want to set ~v1 to lie along the x-axis. What this means is we can write,

~u1 = u1(cos(θ), sin(θ))

~u′1 = (u1 cos(θ)− V, u1 sin(θ))

From the conservation of momentum equation,

~u′2 = −m1

m2
~u′1

To find the scattering angle,

cot(θ′) =
u′1x
u′1y

=
u1x − V
u1y

=
u1x
u1y
− V

u1y

The first term we recognize as being related to the scattering angle in the lab frame,

= cot(θ)− m1v1
(m1 +m2)u1 sin(θ)

cot(θ′) = cot(θ)− m1

sin(θ)

(
m1 cos(θ)−

√
m2

2 −m2
1 sin2(θ)

)
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1.5 Two-Body Problem

Two masses m1 and m2 in a uniform gravitational field are connected by a spring of
unstretched length h and spring constant k. The system is held by m1 so that m2 hangs
down vertically, stretching the spring. At t = 0 both m1 and m2 are at rest, and m1

is released, so that the system starts to fall. Set up a suitable coordinate system and
describe the subsequent motion of m1 and m2.

We have two equations of motion: one for the center of mass and one for the spring. For the
center of mass, the only force on it is the gravitational force,

Ẍ = −g

We can solve for the center of mass using equation (1.14),

X =
m1x1 +m2x2
m1 +m2

For the spring, we need to use the reduced mass (1.22) and the distance between the two points,
x,

µẍ = −kx

Integrating the center of mass equation,

X = −1/2gt2 + v0t+X0

For the spring, we use the solution to a simple harmonic oscillator,

x = A cos(ωt)

ω2 =
k

µ

Our initial conditions, 

x1(0) = 0

x2(0) = h+
m2g

k

ẋ1(0) = ẋ2(0) = 0

Substituting these in,

x2(0)− x1(0) = A cos(0)

A = h+
m2g

k
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v0 = 0

X(0) = X0

m2

m1 +m2

(
h+

m2g

k

)
= X0

Our equations of motion, 
x(t) = A cos(ωt)

X(t) == −1/2gt2 +
m2A

m1 +m2

Let’s write these in terms of x2 and x1,
x2 − x1 = A cos(ωt)

m1x1 +m2x2
m1 +m2

= −1/2gt2 +
m2A

m1 +m2

Solving for x1,

m1x1 +m2x2 = −1/2(m1 +m2)gt2 +m2A

m1x1 +m2(A cos(ωt) + x1) = −1/2 (m1 +m2)gt2 +m2A

x1(m1 +m2) = −1/2(m1 +m2)gt2 +m2A(1− cos(ωt))

x1 = −1/2 gt2 +
m2A

m1 +m2
(1− cos(ωt))

For x2,

x2 = x1 +A cos(ωt)

x2 = −1/2 gt2 +
A

m1 +m2
(m2 +m1 cos(ωt))
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1.6 Three-Body Problem

The Earth and the Moon form a two-body system interacting through their mutual
gravitational attraction. IN addition, each body is attracted by the gravitational field
of the Sun, which in the sense of Section 1.3 is an external force. Take the Sun as
the origin and write down the equations of motion for the center of mass ~X and the
relative position ~x of the Earth-Moon system. Expand the resulting expressions in
powers of x/X, the ratio of the magnitudes. Show that to lowest order in x/X the
center of mass and relative position are uncoupled, but that in higher orders they are
coupled because the Sun’s gravitational force is not constant.

From the center of mass equation (1.14) and the relative distances, the equations of motion are,
~̈X =

me~̈re +mm~̈rm
M

~̈x = ~̈rm − ~̈re

Using the gravitational force equation,
~̈re = −Gms

r3e
~re +

Gmm

x3
~x

~̈rm = −Gms

r3m
~rm −

Gme

x3
~x

Substituting these into the equations of motion,

~̈X = − 1

M

(
−Gmsme

r3e
~re +

Gmmme

x3
~x− Gmsmm

r3m
~rm −

Gmemm

x3
~x

)

~̈X = −Gms

M

(
me

r3e
~re +

mm

r3m
~rm

)

~̈x = −Gms

r3m
~rm −

Gme

x3
~x+

Gms

r3e
~re −

Gmm

x3
~x

~̈x = −Gms

(
~rm
r3m
− ~re
r3e

)
− GM

x3
~x

We want to write ~re in terms of ~x and ~X so we can write our equations of motion solely using
~x and ~X,

~rm = ~x+ ~re



20 CHAPTER 1. FUNDAMENTALS OF MECHANICS

M ~X = me~re +mm~rm

= me~re +mm(~x+ ~re)

= M~re +mm~x

~re = ~X − mm

M
~x

We can do the same for ~rm,

~rm = ~X +
me

M
~x

We notice we have r−3e and r−3m . Rather than writing these out explicitly, we can use approxi-
mations,

r−3e =
[(
~X − mm

M
~x
)(

~X − mm

M
~x
)]−3/2

=

[
X2 − 2

mm

M
~X · ~x+

(mm

M

)2
x2
]−3/2

=
1

X3

[
1 +

(
−2

mm

M

~X · ~x
X2

+
(mm

M

)2 x2

X2

)]−3/2
Using the binomial approximation,

r−3e ≈
1

X3

[
1− 3

2

(
−2mm

M

~X · ~x
X2

+
(mm

M

)2 x2

X2

)]

Similarly,

r−3m ≈
1

X3

[
1− 3

2

(
−2me

M

~X · ~x
X2

+
(me

M

)2 x2

X2

)]

If we’re keeping the lowest order in x/X, we only keep the first terms,

r−3m ≈ r−3e ≈
1

X3

Substituting into ~̈x,

~̈x = −Gms

X3
~x− GM

x3
~x



1.6. THREE-BODY PROBLEM 21

~̈x ≈ −GM
x3

~x

For ~̈X,

~̈X = − Gms

MX3
(M ~X)

~̈X ≈ −Gms

X3
~X
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1.7 Particle in Polynomial Potential

Show that a one-dimensional particle subject to the force F = −kx2n+1, where n is an
integer, will oscillate with a period proportional to A−n, where A is the amplitude.
Pay special attention to the case of n ≤ 0.

Let’s go ahead and work with the potential(1.10),

V =
k

2n+ 2
x2n+2

From quadrature (1.12), the period is given by,

P =
√

2m

∫ A

−A

dx√
E − V

We know that the energy is equal to the maximum value of the potential, i.e., E = V (A).

=

√
2m(2n+ 2)

k

∫ A

−A

dx

A2n+2 − x2n+2

Setting u = x/A,

=

√
2m(2n+ 2)

k

∫ 1

−1

A du√
A2n+2 + (Au)2n+2

=

√
2m(2n+ 2)

k

1

An

∫ 1

−1

du

1− u2n+2

The integral will be left to the reader as an exercise, but we don’t actually need to solve it since
it has no dependence on A. From this, we can see that the period goes by A−n as desired.

Now what happens if we have a negative n. Specifically, let’s look at the case where n = −1.
In this case, F = −kx−1, so the potential becomes V = k ln(x). The period,

P =

√
2m

k

∫ A

−A

dx√
ln(A)− ln(x)

=

√
2m

k

∫ A

−A

dx√
− ln(x/A)

Setting u = x/A,

P =

√
2m

k
A

∫ 1

−1

du√
− ln(u)

Once again the integral does not depend on A, so the period goes by A as expected.
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1.8 Yo-yo Motion

A yo-yo consists of two disks of mass M and radius R connected by a shaft of mass m
and radius r; a weightless string is wrapped around the shaft.

1.8.a The free end of the string is held stationary in the Earth’s gravita-
tional field. Assuming that the string starts out vertical, find the
motion of the yo-yo’s center of mass.

We start by writing the Lagrangian,

L =
1

2
µẋ2 +

1

2
I
ẋ2

r2
+ µgx

µ = 2M +m

I = MR2 +
1

2
mr2

Note that the outer disks will have the same rotational velocity since they are connected.
Using the Lagrangian equations of motion,

µg =
d

dt

[
µẋ+

I

r2
ẋ

]

ẍ =
µg

µ+ I/r2

1.8.b The free end is moved so as to keep the yo-yo’s center of mass
stationary. Describe the motion of the free end of the string and
the rotation of the yo-yo.

Going to force diagrams, the tension must be equal to the gravitational force,

T = µg

We can then use torque to find the rotation of the yo-yo.

Fr = Iα

α =
µgr

I

The free end must also obey this acceleration,

a = αr =
µgr2

I
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1.8.c The yo-yo is transported to empty space, where there is no gravi-
tational field, and a force F is applied to the free end of the string.
Describe the motion of the center of mass of the yo-yo, the yo-yo’s
rotation, and the motion of the free end of the string.

As again, if there is an applied force on the free end, the center of mass must feel the same force,

a =
F

µ

α =
Fr

I

The free end will accelerate as a combination of both the center of mass and the rotation,

A = a+ αr = F

(
1

µ
+
r2

I

)
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1.9 Terminal Velocity

A particle in a uniform gravitational field experiences an additional retarding force
F = −α~v, where ~v is its velocity. Find the general solution to the equations of motion
and show that the velocity has an asymptotic value (called the terminal velocity). Find
the terminal velocity.

We start by writing the force in this field,

~F = m~g − α~v

We can effectively treat this as a one-dimensional problem, so let’s get rid of those vector,

mẍ = mg − αẋ

I don’t like solving second-order differential equations, so let’s turn it into a first-order differential
equation,

mv̇ = mg − αv

m
dv

dt
= mg − αv

I had to look up how to solve non-homogeneous first-order differential equations,[
dv

dt
+
α

m
v = g

]
exp

(
αt

m

)

exp

(
αt

m

)
dv

dt
+
α

m
exp

(
αt

m

)
v = g exp

(
αt

m

)
We use the product rule on the left side,

d

dt

[
exp

(
αt

m

)
v

]
= g exp

(
αt

m

)

exp

(
αt

m

)
v = g exp

(
αt

m

)
dt

v =
mg

α
+ c exp

(
−αt
m

)
Setting the initial velocity to v0, we can solve for the constant, leaving us with the full solution,

v(t) =
mg

α
−
(mg
α
− v0

)
exp

(
−αt
m

)
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As time goes to infinity, the exponential term dies, which means the velocity has some asymptotic
behaviour. It approaches v = mg/α. To find the position, we can integrate over time and set
x(0) = x0,

x(t) =
mg

α
t+
(m
α

)(mg
α
− v0

)[
exp

(
−αt
m

)]
+ c

x(t) =
mg

α
t+
(m
α

)(mg
α
− v0

)[
exp

(
−αt
m

)
− 1

]
+ x0
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1.10 Trajectory Derivation

Change the variable of integration in Eq. (1.7) from s to any other parameter in order
to show that the distance between two points on the trajectory, as defined by (1.7), is
indeed independent of the parameter.

Jose’s equation (1.7),

l(s0, s1) =

∫ s1

s0

(
dxi
ds

dxi
dx

)1/2

ds

We’ll perform a change of variables by changing s → α. Further, we say that α(s0) = α0 and
α(s1) = α1.

l

∫ α1

α0

(
dxi
dα

dα

ds
· dxi
dα

dα

ds

)1/2
ds

dα
dα

=

∫ α1

α0

(
dxi
dα

dxi
dα

)1/2
dα

ds

ds

dα
dα

=

∫ α1

α0

(
dxi
dα

dxi
dα

)1/2

dα

Which is the same form as the equation in the problem, so the integral is independent of the
parameter.
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1.11 Curvature and the Frenet Formulas

1.11.a The concept of curvature and radius of curvature are defined by
extending those concepts from circles to curves in general. The
curvature κ is defined, as in Eq. (1.13), as the rate (with respect
to length along the curve) of rotation of the tangent vector. Show
that what Eq. (1.13) defines is in fact the rate of rotation of τ
(i.e., that it gives the rate of change of the angle τ makes with a
fixed direction). Show also that for a circle in the plane κ = 1/R,
where R is the radius of the circle.

Jose’s equation (1.13),

lim
t1→t2

|~τ(t1)− ~τ(t2)|
|l(t1)− l(t2)|

=

∣∣∣∣d~τdl
∣∣∣∣ = κ

We start by taking the scalar product of ~τ and a N̂ , a fixed unit vector. If we take the derivative
according l,

d

dl
(~τ · N̂) =

d~τ

dl
· N̂

=

∣∣∣∣d~τdl
∣∣∣∣ cos(φ)

Alternatively, we could apply the scalar product before taking the derivative,

d

dl
(~τ · N̂) =

d

dl
(τ cos(θ))

= −τ sin(θ)
dθ

dl

From the text, we know that
d~τ

dt
and ~τ are orthogonal, so θ and φ are off by a factor of π/2,

which means sin(θ) = − cos(φ). Setting the two solutions equal to each other,∣∣∣∣d~τdl
∣∣∣∣ cos(φ) = −τ sin(θ)

dθ

dl∣∣∣∣d~τdl
∣∣∣∣ = τ

dθ

dl

If we then normalize ~τ , ∣∣∣∣d~τdl
∣∣∣∣ = κ =

dθ

dl

For a circle, l = Rθ, so κ = 1/R.
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1.11.b Derive the second of the Frenet formulas from the fact that τ̂ , n̂,
and B̂ are a set of orthogonal unit vectors and from the definition
of θ.

The second Frenet formula is

˙̂n = −κl̇~τ + θl̇B̂

We’ll start by looking at the time derivative of B̂,

˙̂
B = ˙̂τ × n̂+ τ̂ × ˙̂n

The first term dies because of the first Frenet formula (n̂× n̂ = 0). In addition, from the text,
˙̂
B = −θl̇n̂,

−θl̇n̂ = τ̂ × ˙̂n

If we look at the term,

θl̇B̂ = θl̇(τ̂ × n̂)

Using the definition of
˙̂
B from the text,

= τ × ( ˙̂n× τ̂)

Using the vector triple product (BACCAB),

= ˙̂n− τ( ˙̂n · τ)

Since n̂ and τ̂ are orthogonal, the time derivative of their scalar product must also be equal to
0, so ˙̂n · τ̂ = −n̂ · ˙̂τ . Further, using the first Frenet formula, ˙̂n · τ̂ = −κl̇. Substituting this in,

θl̇B̂ = ˙̂n+ κl̇τ̂

˙̂n = −κl̇τ̂ + θl̇B̂
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1.12 Particle on an Ellipse

A particle is constrained to move at constant speed on the ellipse aijx
ixj = 1(i, j = 1, 2).

Find the Cartesian components of its acceleration as a function of position on the
ellipse.

Since it is moving in a curve, the acceleration of the particle is,

a =
v2

R

where, by looking this up,

R =
(1 + y′2)3/2

y′′

From the equation for an ellipse with semimajor axis A along the x-axis and semiminor axis B
along the y-axis,

y =
B

A
(A2 − x2)1/2

y′ = −B
A
x(A2 − x2)−1/2

y′′ = − BA

(A2 − x2)3/2

Substituting these in,

R =

(
1 +

B2x2

A2(A2 − x2)

)3/2

− BA

(A2 − x2)3/2

= − [A2(A2 − x2) +B2x2]3/2

BA4

R = − [A4 + (B2 −A2)x2]3/2

A4B

From this, the total acceleration,

a = −v2 A4B

[A4 + (B2 −A2)x2]3/2
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The components can be found by looking them up. For the x-component,

ax = a sin(θ) = ay′(1 + y′2)−1/2

= −v2 A4B

[A4 + (B2 −A2)x2]3/2

(
−B
A
x(A2 − x2)−1/2

)(
A2(A2 − x2)

A4 + (B2 −A2)x2

)1/2

ax =
v2A4B2x

[A4 + (B2 −A2)x2]2

The y-component,

ay = a cos(θ) = a(1 + y′2)−1/2

We could repeat the process above, but we could also notice,

ay =
ax
y′

=
v2A4B2x

[A4 + (B2 −A2)x2]2

(
−A
√
A2 − x2
Bx

)

ay = − v2A5B
√
A2 − x2

[A4 + (B2 −A2)x2]2
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1.13 Existence of Mass

Show that if Eq. (1.17) is satisfied, there exists constants m1, m2, and m3 such that
Eqs. (1.15) and (1.16) can be put in the form of (1.18).

Eq. (1.15),

~v1(t) + µ12~v2(t) = ~K

Eq. (1.16), {
~v2(t) + µ23~v3(t) = ~L

~v3(t) + µ31~v1(t) = ~M

Eq. (1.17),

µ12µ23µ31 = 1

Eq. (1.18), 
m1~v1 +m2~v2 = ~P12

m2~v2 +m3~v3 = ~P23

m3~v3 +m1~v1 = ~P31

We’ll start with

~v1 + µ12~v2 = ~K

We want to choose a µ12 such that we get

m1~v1 +m2~v2 = ~P12

One such choice is, 
µ12 =

m2

m1

~P12 = m1
~K

We can do similar for the other µ, 
µ23 =

m3

m2

µ31 =
m1

m3
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1.14 Non-Inertial Frames

Consider Eq. (1.23) in two rather than three dimensions, and assume that the ~x and
~y coordinates are not both inertial, but rotating with respect to each other: y1 =
x1 cos(ωt) − x2 sin(ωt), y2 = x1 sin(ωt) + x2 cos(ωt). Show that in general even if the ~x

acceleration vanishes, the ~y acceleration does not. Find ~̈y for ~̈x = 0, but ~̇x 6= 0 and
~x 6= 0. Give the physical significance of the terms you obtain.

Eq. (1.23), {
yi = fi(x, t)

xi = gi(y, t)

We can write the given conditions in matrix notation,

|y〉 = A |x〉

A =

cos(ωt) − sin(ωt)

sin(ωt) cos(ωt)


Following the prescription in the text,

|ÿ〉 = Ä |x〉+ 2Ȧ |ẋ〉+A |ẍ〉

If |ẍ〉 = 0, |ÿ〉 does not necessarily vanish. We can find |ÿ〉 by taking the necessary time
derivatives. As we will see in a later chapter, the first term corresponds to centripetal acceleration
and the second corresponds to Coriolis force,

Ȧ =

[
−ω sin(ωt) −ω cos(ωt)
ω cos(ωt) −ω sin(ωt)

]

Ä =

[
−ω2 cos(ωt) ω2 sin(ωt)
−ω2 sin(ωt) −ω2 cos(ωt)

]
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1.15 Particle in a Force Field

A particle of mass m moves in one dimension under the influence of the force

F = −kx+
a

x3

Find the equilibrium points, show that they are stable, and calculate the frequencies
of oscillation about them. Show that the frequencies are independent of the energy.

The equilibrium points can be found by taking the first derivative of potential and setting that
equal to 0. However, we’re given force, which is already the negative derivative of the potential
(1.10), so we’re most of the way there. All we need to do is set the given force equal to 0 and solve
for x,

−kx+
a

x3
= 0

kx4 = a

x = ±
(a
k

)1/4
To determine if these are stable, we take the second derivative of the potential (or the first

derivative of the force and negatify it), plug in the equilibrium points and see if the result is
positive,

−dF
dx

= k +
3a

x4

= k + 3a

(
k

a

)
= 4k

This is positive as long as k is positive. Furthermore, this implies that a must also be positive
since different signs would give imaginary solutions.

TO find the period of oscillation, we slightly perturb x, i.e., x→ x+ ε. Our original equation,

mẍ = −kx+
a

x3

becomes

m(ẍ+ ε̈) = −k(x+ ε) + a(x+ ε)−3

Using the binomial approximation on the second term,

= −kx− εk + ax−3
(

1− 3
ε

x

)
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mẍ+mε̈ = −kx+
a

x3
− εk − 3

aε

x4

mε̈ = −εk − 3aε

x4

Substituting in the equilibrium point,

mε̈ = −4kε

We recognize this as the simple harmonic oscillator, so the frequency is

ω = 2

√
k

m

The frequency does not depend on the position or any other terms which might affect the energy.
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1.16 Center of Mass, System of Particles

Consider a system of particles made of K subsystems, each itself a system of particles.
Let MI be the mass and ~XI the center of mass of the Ith subsystem. Show that the
center of mass of the entire system is given by an equation similar to (1.57), but with

mi and ~xi replaced by MI and ~XI and the sum taken from I = 1 to I = K.

Jose (1.57),

~X =
1

M

∑
i

mi~xi

=

∑
imi~xi∑
imi

We can use this to define a single subsystem,

~XI =
1

MI

∑
i

mi~xi

If we then break up our subsystems into their constituent particles, we can define each particle
with a mass mIi and ~xIi with the first index referring to the subsystem and the second index to
the number of that particle within that subsystem. We then use (1.57) to write the total center of
mass,

~X =

∑
I

∑
imIi~xIi∑

I

∑
imIi

We can regroup the particles back into their subsystems,

=
1

M

∑
I

MI
~XI

Alternatively, we could think of each subsystem as a single particle and extrapolate from there.
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1.17 Center of Mass, Kinetic Energy

Express the total kinetic energy of a system of N particles in terms of their center of
mass and the relative positions of the particles [i.e, derive Eq. (1.65)]. Extend the
result to a continuous distribution of particles with mass density ρ(~x). (Hint: Replace
the sum by an integral)

Equation (1.65),

T = 1/2 MẊ2 + 1/2
∑
i

miẏ
2
i

The kinetic energy of a system of particles (1.18) can be found by summing the kinetic energy of
each individual particle. Before we do this, we should define the position of the ith particle relative
to the center of mass,

~yi = ~xi − ~X

Now if we sum all the kinetic energies,

T = 1/2
∑
i

miẋ
2
i

= 1/2
∑
i

mi(~̇yi + ~̇X)2

= 1/2
∑
i

miẏ
2
i +

∑
i

mi~̇yi · ~̇X + 1/2
∑
i

miẊ
2

The second term, we can kill by looking at the definition of center of mass (1.14),

~X =
1

M

∑
i

mi~xi =
1

M

∑
i

mi(~yi + ~X)

=
1

M

∑
i

mi
~X +

1

M

∑
i

mi~yi

~X = ~X +
1

M

∑
i

mi~yi

If we sum over the relative positions, they should all cancel out. Similarly, if we sum over relative
velocities, they should also cancel out. We are left with

T = 1/2 MẊ2 + 1/2
∑
i

miẏ
2
i

To convert to continuous distribution, we do as the hint suggests and convert the sum to an
integral. We also convert the masses to mass density,

T = 1/2 MẊ2 + 1/2

∫
ρẏ2 d3x
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1.18 Internal Forces

In deriving Eq. (1.73) we assumed that the internal forces do not contribute to the
total torque on a system of particles. Show explicitly that if for each i and j the
internal force ~Fij lies along the line connecting the ith and jth particles, then the
internal forces indeed do not contribute to the total torque.

Equation (1.73),

~Nz = ~̇Lz

The total torque (1.6) can be found by summing over the individual torque of each particle,

~N =
∑
i

~zi × ~Fi

The internal torque is the torque between each particle,

~Nint =
∑
i 6=j

~zij × ~Fij = 1/2
∑
i6=j

(~zi × ~Fij + ~zj × ~Fji)

Using Newton’s Third Law,

= 1/2
∑
i 6=j

(~zi × ~Fij − ~zj × ~Fij)

= 1/2
∑
i 6=j

(~zi − ~zj)× ~Fij

Since ~zi − ~zj is in the same direction as ~Fij , the internal torque dies.
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1.19 1.19
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1.20 Stable Equilibrium

A particle of mass m moves along the x axis under the influence of the potential

V (x) = V0x
2 exp(−ax2)

where V0 and a > 0 are constants. Find the equilibrium points of the motion, draw a
rough graph of the potential, and draw the phase portrait of the system. On these
graphs indicate the relation between the energy and geometry of the orbits in velocity
phase space.

I’m just going to find the equilibrium points, which we do by taking the first derivative of the
potential and setting it equal to 0.

dV

dx
= 2V0x exp(−ax2)− 2V0ax

3 exp(−ax2) = 0

2V0x exp(−ax2) = 2V0ax
3 exp(−ax2)

1

a
= x2

x = ±
√

1

a
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1.21 1.21
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1.22 1.22
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1.23 1.23
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1.24 1.24
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1.25 1.25
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1.26 Vector Product

Derive Eq. (1.85)

Equation (1.85),

~̈y = ω × (ω × ~y) + 2ω × ~̇y

I believe there to be a typo here. I think this should be

~̈y = −ω × (ω × ~y) + 2ω × ~̇y

Let’s do this by brute force, defining {
~y = (y1, y2, y3)

~ω = (0, 0, ω)

~ω × ~y = (−ωy2, ωy1, 0)

~ω × (~ω × ~y) = (−ω2y1,−ω2y2, 0)

ω × ~̇y = (−ωẏ2, ωẏ1, 0)

Combining this, we can compare to equation (1.84),
ÿ1 = ω2y1 − 2ωẏ2

ÿ2 = ω2y2 + 2ωẏ1

ÿ3 = 0
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1.27 Centrifugal Force

In the film ”2001: A Space Odyssey” there is a toroidal space station rotating about
a fixed axis that provides a centrifugal acceleration equal to the Earth’s gravitational
acceleration g = 10m/s2 on a stationary object.

1.27.a Find the needed ω, assuming that the radius of the space station
is 150m.

Using Jose (1.82) with y2 = y3 = 0,

y1 = x1 cos(ωt)− x2 sin(ωt)

Jose (1.84) gives the acceleration,

ÿ1 = ω2y1

Note that because we set y2 = y3 = 0, we ignore some terms.

ω2 =
ÿ1
y1

=
10m/s2

150m

ω = 0.25s−1

1.27.b Find the (fictitious) gravitational acceleration that would be felt
by a person walking at 1.3m/s in two directions along the inner
tube of the torus and across it.

A person walking along the inner tube will be moving parallel to the rotation, so there is no
additional acceleration. A person walking across the inner tube has an additional term,

ẏ2 = 1.3m/s

Using (1.84),

ÿ1 = ω2y1 − 2ωẏ2

We’ve already established the first terms gives 10m/s2, so the second term,

−2ωẏ2 = −2 ∗ 0.25s−1 ∗ 1.3m/s = −0.65m/s2

Note this will either increase or decrease the centrifugal acceleration based on which direction
they are moving.
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1.27.c Find the (fictitious) acceleration that would be felt by a person
sitting down or rising from a chair at 1.3m/s

This would be a velocity in y1,

ẏ1 = 1.3m/s

Looking at (1.84), this affects the acceleration in y2,

ÿ2 = 2ωẏ1 = 0.65m/s2



Chapter 2

Lagrangian Formulation of
Mechanics

2.1 Conservation of Energy

Show that if all the external forces are given by a time-independent potential (i.e., if
~Fi = −∇iV (~x1, ..., ~xN )), then the rate of change of total energy is given by Eq. (2.15).

Jose equation (2.15),

dE

dt
= −

∑
I

λI
∂fI
∂t

As the book suggests, we should do the same thing as was done for the one-particle system. We
start with

m~̈x · ~̇x =
d

dt

∑
i

1

2
miẋ

2
i

= −
∑
i

∇iVi · ~̇xi +
∑
i,I

∇fi · ~̇xi

We recognize this as the change in kinetic energy,

dT

dt
= −dV

dt
−
∑
I

λi
∂fI
∂t

dE

dt
= −

∑
I

λI
∂fI
∂t

49
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2.2 2.2
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2.3 Coordinate Transformation

Prove that if L ′ is defined by (2.36), then Eq. (2.28) implies Eq. (2.37).

Jose equation(2.36),

L ′(q′, q̇′, t) = L (q(q′, t), q̇(q′, q̇′, t), t) = L (q, q̇, t)

Jose equation(2.28),

d

dt

∂L

∂q̇α
− ∂L

∂qα
= 0

Jose equation(2.37),

d

dt

∂L ′

∂q̇′α
− dL ′

dq′α
= 0

We’ll start with the last equation. Using the chain rule,

d

dt

∂L ′

∂q̇′
− dL ′

dq′
=

d

dt

(
∂L ′

∂q̇

∂q̇

∂q̇′

)
− ∂L ′

∂q

∂q

∂q′
− ∂L ′

∂q̇

∂q̇

∂q′

d

dt

(
∂L ′

∂q̇

)
∂q̇

∂q̇′
+
∂L ′

∂q̇

d

dt

(
∂q̇

∂q̇′

)
− ∂L ′

∂q

∂q

∂q′
− ∂L ′

∂q̇

∂q̇

∂q′

We can convince ourselves that 
∂q̇

∂q′
=

d

dt

(
∂q

∂q′

)
∂q̇

∂q̇′
=

∂q

∂q′

Using these, [
d

dt

(
∂L ′

∂q̇

)
− ∂L ′

∂q

]
∂q

∂q′
+
∂L ′

∂q̇

[
d

dt

(
∂q̇

∂q̇′

)
− ∂q̇

∂q′

]
The first term disappears using Jose equation (2.28), and the second disappears due to the

corollaries we found.
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2.4 2.4
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2.5 2.5
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2.6 2.6
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2.7 2.7
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2.8 2.8
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2.9 Double Pendulum

A double plane pendulum consists of a simple pendulum (mass m1, length l1) with
another simple pendulum (mass m2, length l2) suspended from m1, both constrained
to move in the same vertical plane.

2.9.a Describe the configuration manifold Q of this dynamical system.
Say what you can about TQ.

2.9.b Write down the Lagrangian of this system in suitable coordinates

If we define the deviation of the first mass from the origin as θ1 and the deviation of the second
mass from the first mass as θ2, we can define the coordinate positions of the masses as{

x1 = l1 sin(θ1)

y1 = −l1 cos(θ1)

{
x2 = l1 sin(θ1) + l2 sin(θ2)

y2 = −l1 cos(θ1)− l2 cos(θ2)

Note that it is easiest if we define the top of the pendulum as zero. The velocities of the masses
is then, {

ẋ1 = l1θ̇1 cos(θ1)

ẏ1 = l1θ̇1 sin(θ1)

{
ẋ2 = l1θ̇1 cos(θ1) + l2θ̇2 cos(θ2)

ẏ2 = l1θ̇1 sin(θ1) + l2θ̇2 sin(θ2)

The Lagrangian,

L = 1/2 m1(ẋ21 + ẏ21) + 1/2 m2(ẋ22 + ẏ22)−m1gy1 −m2gy2

L = m1/2(l21θ̇
2
1) + m2/2(l21θ̇

2
1 + l22θ̇

2
2 + 2l1l2θ̇1θ̇2 cos(θ1 − θ2)) +m1gl1 cos(θ1) +m2g(l1 cos(θ1) + l2 cos(θ2))

2.9.c Derive the Euler-Lagrange equations

The equations of motion (2.6),

d

dt

(
∂L

∂θ̇1

)
− ∂L

∂θ1
= 0
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(m1 +m2)l21θ̈1 +m2l1l2θ̈2 cos(θ1 − θ2) +m2l1l2θ̇
2
2 sin(θ1 − θ2) + (m1 +m2)gl1 sin(θ1) = 0

d

dt

(
∂L

∂θ̇2

)
− ∂L

∂θ2
= 0

m2l
2
2θ̈2 +m2l1l2θ̈1 cos(θ1 − θ2)−m2l1l2θ̇

2
1 sin(θ1 − θ2) +m2gl2 sin(θ2) = 0
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2.10 Spring Pendulum

Consider a stretchable plane pendulum, that is, a mass m suspended from a spring of
spring constant k and unstretched length l, constrained to move in a vertical plane.
Write down the Lagrangian and obtain the Euler-Lagrange equations.

We can write the coordinates as {
x = d sin(θ)

y = −d cos(θ)

where we have defined d as the length of the spring and θ as the angular deviation of the
pendulum. Unlike other pendulum problems we’ve looked at, the string length is not constant.
The velocities, {

ẋ = ḋ sin(θ) + dθ̇ cos(θ)

ẏ = −ḋ cos(θ) + dθ̇ sin(θ)

The Lagrangian consists of kinetic energy, spring potential energy, and gravitational potential
energy.

L = 1/2 m(ḋ2 + d2θ̇2)− 1/2 k(d− l)2 +mgd cos(θ)

The equations of motion (2.6),

d

dt

(
∂L

∂ḋ

)
− ∂L

∂d
= 0

d̈ = dθ̇2 − k

m
(d− l) + g cos(θ)

d

dt

(
∂L

∂θ̇

)
− ∂L

∂θ
= 0

θ̈ = −g
d

sin(θ)− 2
ḋθ̇

d
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2.11 Bead on a Wire

A wire is bent into the shape given by y = A|xn|, n ≥ 2 and oriented vertically, opening
upward, in a uniform gravitational field g. The wire rotates at a constant angular
velocity ω about the y axis, and a bead of mass m is free to slide on it without friction.

2.11.a Find the equilibrium height of the bead on the wire. Consider
especially the case n = 2

We start by writing the Lagrangian. We can simplify this since we have symmetry about the y-axis,
so we end up looking only at x > 0,

y = Axn

L =
m

2
(ẋ2 + ẏ2) +

m

2
ω2x2 −mgy

=
m

2
(ẋ2 +A2n2x2n−2ẋ2) +

m

2
ω2ω2x2 −mgAxn

The equation of motion,

(1 +A2n2x2n−2)ẍ+
1

2
(2n− 2)A2n2x2n−3ẋ2 − ω2x+ ngAxn−1 = 0

In order to find the equilibrium point, we set ẋ = ẍ = 0,

ω2x = ngAxn−1

xn−2 =
ω2

ngA

Converting to height, ( y
A

)n − 2/n

=
ω2

ngA

yn−2 =
1

A2

(
ω2

ng

)n
Another solution is y = 0.
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2.11.b Find the frequency of small vibrations about the equilibrium po-
sition

To find the frequency of small oscillation, we replace y = y0 + δ. Going back to the equation of
motion, let’s define,

f(x) = 1 +A2n2x2n−2

f(x)ẍ+
1

2
f ′(x)ẋ2 − ω2x+ ngAxn−1 = 0

Looking at the equilibrium point, x = 0, for n > 2, most terms die,

δ̈ − ω2δ = 0

The frequency of oscillation is the same as the angular velocity of the wire. For n = 2,

δ̈ = (ω2 − 2gA)δ

We recognize this as the harmonic oscillator,

ω =
√
ω2 − 2ga

For the other equilibrium point,

x0 =

(
ω2

ngA

)1/(n−2)

The equation of motion becomes

f(x0 + δ)(ẍ+ δ̈) +
1

2
f ′(x+ δ)(ẋ+ δ̇2 − ω2(x+ δ) + ngA(x+ δ)n−1 = 0

Using the binomial expansion and the original equation of motion,

f(x0)δ̈ − ω2δ + ngA(n− 1)xn−10 δ = 0

The frequency of oscillation,

ω =

√
ω2 − n(n− 1)gAxn−10

f(x0)
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2.12 Cycloid Equation of Motion

A particle starts at rest and moves along a cycloid whose equation is

x = ±a cos−1
(
a− y
a

)
+
√

2ay − y2

There is a gravitational field of strength g in the negative y direction. Obtain and solve
the equations of motion. Show that no matter where on the cycloid the particle starts
out at time t = 0, it will reach the bottom at the same time. [Suggestion: Choose
arclength along the cycloid as the generalized coordinate.]

We do as the suggestion and convert to arclength,

s =

∫ √
1 +

(
dx

dy

)2

dy

dx

dy
=

2a− y√
2ay − y2

s =

∫ √
1 +

(2a− y)2

2ay − y2
dy =

∫ √
2a

y
dy

s = 2
√

2ay

The Lagrangian is given by

L =
1

2
mṡ2 −mgy

L =
1

2
mṡ2 − mgs2

8a

The equation of motion given by this Lagrangian,

s̈+
gs

4a
= 0

We recognize this as a harmonic oscillator,

s(t) = A cos(ωt+ φ)

ω =

√
g

4a

Furthermore, we know that a pendulum has the same period regardless of starting position.
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2.13 Spring

Two masses m1 and m2 are connected by a massless spring of spring constant k. The
spring is at its equilibrium length and the masses are both at rest; there is no gravita-
tional field. Suddenly m2 is given a velocity v. Assume that v is so small that the two
masses never collide in their subsequent motion. Describe the motion of both masses.
What are their maximum and minimum separations?

We start by writing the Lagrangian,

L =
1

2
m1ẋ

2
1 +

1

2
m2ẋ

2
2 −

1

2
k(x− l)2

x = x2 − x1

Furthermore, we define the center of mass to be the origin,

m1x1 +m2x2 = 0

x1 = − m2x

m1 +m2

x2 =
m1x

m1 +m2

Rewriting the Lagrangian in terms of the separation between the two masses,

L =
1

2
µẋ2 − 1

2
k(x− l)2

The equation of motion,

µẍ+ k(x− l) = 0

x(t) = l +
v

ω
sin(ωt)

ω =

√
k

µ

From this, we can determine the maximum and minimum separation by setting sin(ωt) equal
to 1 and -1 respectively.

x1(t) = − m1

m1 +m2

(
l +

v

ω
sin(ωt)

)

x2(t) =
m1

m1 +m2

(
l +

v

ω
sin(ωt)

)
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